	<mark>ananda College of Engi</mark> n Unit of Vivekananda Vidyo			
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi				
CRM08	Rev 1.10	EC	2/8/21	

CONTINUOUS INTERNAL EVALUATION-3				
Dept: EC	Sem / Div:4AB	Sub: Control Systems	S Code:18EC43	
Date:5/8/21	Time: 9:30-11:00 AM	Max Marks: 50	Elective: N	
Note: Answer any 2 full questions, choosing one full question from each part.				

QN	Questions	Marks	RBT	COs
	PART A			
a	Derive the expression for unit step response of underdamped second order system.	8	L2	CO3
b	Figure shows a mechanical vibratory system, when a force of 8.9N is applied to the system the mass oscillator as shown is figure below. Determine the value of M, B and K.	10	L3	CO3
	Find K1 so that $\mathcal{E}=0.35$. Find the corresponding time domain		L3	CO3
c	Find K1 so that $\mathcal{E}=0.35$. Find the corresponding time domain specification for the figure below.		L3	
	$R(s)$ $\rightarrow (s)$ (s) $($	7		
	<u> </u>			
2	CO3 Define peak time and derive the expressions for the same.	10	L3	CO3
b	A positional control system with velocity feedback in figure below. What is the response $c(t)$ to the unit step input. Given that $\mathcal{E}=0.5$. Also calculate rise time, peak time, maximum overshoot and settling time.	10	L3 L3	CO3
	$\frac{16}{(\kappa (s+1))} \rightarrow c(s)$			
	Write a short note on PID controllers	5	L2	CO3
c				

Prepared by: Mrs Sowmya Anil/Mrs Prabha G S

Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]				
CRM08	iated to VTU, Belagavi & A Rev 1.10	pproved by AICTE New EC	Delhi 2/8/21	

CONTINUOUS INTERNAL EVALUATION- 3						
3		Sketch the root locus for the system $G(s)H(s) = \frac{K}{s(s+3)(s+5)}$. Determine the range of K for which the system will have damped oscillating response	13	L3	CO4	
		Using RH-Criterion, determine the stability of the systems represented by the following characteristic equations. (i) $s^4 + 2s^3 + 8s^2 + 4s + 3 = 0$ (ii) $s^5 + s^4 + 3s^3 + 9s^2 + 16s + 10 = 0$.	12	L3	CO3	
	c	What are the Advantages of Root locus.	6	L2	CO4	
		OR		1		
4		A feedback control system is described by $G(s) = \frac{10}{s(s+0.2)(s+0.01)} \wedge H(s) = 1$.Construct the Asymptotic log magnitude plot and exact phase plot. From this determine I.Gain crossover and Phase crossover frequencies. II.Gain margin and Phase margin III.The stability of the close loop system	13	L3	CO4	
		Define the following terms I) Stable system ii) Unstable system iii) Critically stable system iv) Conditionally stable system.	6	L2	CO3	
	c	Define a) Gain Margin b) Phase Margin c) Gain cross over frequency	6	L2	CO4	